Linearizations of Hermitian Matrix Polynomials Preserving the Sign Characteristic

نویسندگان

  • María Isabel Bueno Cachadina
  • Froilán M. Dopico
  • Susana Furtado
چکیده

The development of strong linearizations preserving whatever structure a matrix polynomial might possess has been a very active area of research in the last years, since such linearizations are the starting point of numerical algorithms for computing eigenvalues of structured matrix polynomials with the properties imposed by the considered structure. In this context, Hermitian matrix polynomials are one of the most important classes of matrix polynomials arising in applications and their real eigenvalues are of great interest. The sign characteristic is a set of signs attached to these real eigenvalues which is crucial for determining the behavior of systems described by Hermitian matrix polynomials and, therefore, it is desirable to develop linearizations that preserve the sign characteristic of these polynomials, but, at present, only one such linearization is known. In this paper, we present a complete characterization of all the Hermitian strong linearizations that preserve the sign characteristic of a given Hermitian matrix polynomial and identify several families of such linearizations that can be constructed very easily from the coefficients of the polynomial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Sign Characteristic of Hermitian Linearizations in Dl(p )

The computation of eigenvalues and eigenvectors of matrix polynomials is an important, but di cult, problem. The standard approach to solve this problem is to use linearizations, which are matrix polynomials of degree 1 that share the eigenvalues of P ( ). Hermitian matrix polynomials and their real eigenvalues are of particular interest in applications. Attached to these eigenvalues is a set o...

متن کامل

On backward errors of structured polynomial eigenproblems solved by structure preserving linearizations

First, we derive explicit computable expressions of structured backward errors of approximate eigenelements of structured matrix polynomials including symmetric, skew-symmetric, Hermitian, skew-Hermitian, even and odd polynomials. We also determine minimal structured perturbations for which approximate eigenelements are exact eigenelements of the perturbed polynomials. Next, we analyze the effe...

متن کامل

Conditioning and Backward Error of Block-symmetric Block-tridiagonal Linearizations of Matrix Polynomials

For each square matrix polynomial P (λ) of odd degree, a block-symmetric block-tridiagonal pencil TP (λ), in the family of generalized Fiedler pencils, was introduced by Antoniou and Vologiannidis in 2004, and a variation RP (λ) of this pencil was introduced by Mackey et al. in 2010. These two pencils have several appealing properties, namely they are always strong linearizations of P (λ), they...

متن کامل

Hermitian Matrix Polynomials with Real Eigenvalues of Definite Type. Part I: Classification

The spectral properties of Hermitian matrix polynomials with real eigenvalues have been extensively studied, through classes such as the definite or definitizable pencils, definite, hyperbolic, or quasihyperbolic matrix polynomials, and overdamped or gyroscopically stabilized quadratics. We give a unified treatment of these and related classes that uses the eigenvalue type (or sign characterist...

متن کامل

Definite Matrix Polynomials and their Linearization by Definite Pencils

Hyperbolic matrix polynomials are an important class of Hermitian matrix poly-nomials that contain overdamped quadratics as a special case. They share with definite pencils the spectral property that their eigenvalues are real and semisimple. We extend the definition of hyperbolic matrix polynomial in a way that relaxes the requirement of definiteness of the leading coefficient matrix, yielding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2017